Theoretical Astro-particle physics and Cosmology lab

Department of Physics, SKKU



Research interest


Dark Matter


Dark matter is a form of matter thought to account for approximately 85% of the matter in the universe.Its presence is implied in a variety of astrophysical observations, including gravitational effects that cannot be explained by accepted theories of gravity unless more matter is present than can be seen. For this reason, most experts think that dark matter is abundant in the universe and that it has had a strong influence on its structure and evolution. Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect.

Placeholder

Baryogenesis


In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe. Neither the standard model of particle physics, nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges.

The Early Universe and Matter


Lasting around 370,000 years. Initially, various kinds of subatomic particles are formed in stages. These particles include almost equal amounts of matter and antimatter, so most of it quickly annihilates, leaving a small excess of matter in the universe. At about one second, neutrinos decouple; these neutrinos form the cosmic neutrino background (CνB). If primordial black holes exist, they are also formed at about one second of cosmic time. Composite subatomic particles emerge—including protons and neutrons—and from about 2 minutes, conditions are suitable for nucleosynthesis: around 25% of the protons and all the neutrons fuse into heavier elements, initially deuterium which itself quickly fuses into mainly helium-4. By 20 minutes, the universe is no longer hot enough for nuclear fusion, but far too hot for neutral atoms to exist or photons to travel far. It is therefore an opaque plasma. At around 47,000 years, as the universe cools, its behaviour begins to be dominated by matter rather than radiation. At about 100,000 years, helium hydride is the first molecule. (Much later, hydrogen and helium hydride react to form molecular hydrogen, the fuel needed for the first stars.) At about 370,000 years, the universe finally becomes cool enough for neutral atoms to form ("recombination"), and as a result it also became transparent for the first time. The newly formed atoms—mainly hydrogen and helium with traces of lithium—quickly reach their lowest energy state (ground state) by releasing photons ("photon decoupling"), and these photons can still be detected today as the cosmic microwave background (CMB). This is currently the oldest observation we have of the universe.

Multi-messenger astronomy


Multi-messenger astronomy is the practice of synthesizing these various messengers from violent astronomical events such as Gravational Wave, Cosmic ray, UHE neutrinos, and electromagnetic waves (gamma ray, X-ray, Radio, etc) .